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Primary motivation:
Variational Approach: Minimizing an error function (costfunction) 
between model trajectory and obs for optimizing ICs.

� A single estimate is 
not a good 
representation of 
solution.

� An ensemble filter 
gives a set of 
estimates sampling 
the probability 
distribution of  
solution.

Costfunction curve

Time filter coefficient

(NCEP diabatic model)

Question: Where should the solution be?



Keep in mind: Two major points

�Filtering may unify all modern Data 
Assimilation algorithms based on different 
approximation of error covariance evolution.

�An ensemble filter may produce the best 
estimate due to considering the nonlinear 
evolution of error covariance in time. 



� Introduction.
– What’s Data Assimilation?
– What’s filtering? What good is filtering for Data Assimilation?

� Brief review of modern Data Assimilation algorithms.
– Optimal Interpolation (OI) (Gandin 1963).
– Variational approach (4DVAR) (LeDimet & Talagrand 1986).
– Kalman-Bucy filter (Kalman and Bucy 1961).
– Ensemble Kalman filter (Evensen 1994).

� Ensemble adjustment Kalman filter (EAKF) on a realistic NWP model.
– Description of EAKF algorithm and its advantages.
– Numerical results on a fully-parameterized NWP model.

• Estimate of error covariances.
• Examination of prognostic variables.
• Examination of precipitation rate.

– Numerical results of an ensemble OI experiment.
� Summary and Future work.



Introduction: What is Data Assimilation?

� Atmosphere/Ocean: The evolution has a 
probabilistic nature

– Modeling equation (stochastic):

– Observations: Noisy and irregularly spaced.

� Data Assimilation: Use model dynamics to 
extract information from observations to 
reconstruct the structure of the system.
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Introduction: What is filtering?
What good is filtering for DA?

� Filtering: Use observational probability density  
function (PDF) to modify the prior PDF from
model.

� Good for Data Assimilation:
– Directly address the probabilistic nature of the problem.
– A single estimate has the most likelihood 

(linear/stationary filter).

– A set of estimates are an ensemble of possible states 
(ensemble filter).



Evaluate PDFs and 
compute their product

� Bayes’ rule underlies filtering computations:

– How to evaluate these probability distributions?
– How to compute the product of these PDFs?
– How to produce estimates of x using p(x|Yt)?

� Different approximations form a variety of modern 
DA algorithms.
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�xa=analysis state.
�xf=forecast state.
�y=obs (var: R).            
�H=mapping 

operator  from 
model to obs.   

�P=prior    
covariance  
matrix.

Review of DA algorithms: 
OI, 4DVAR and Kalman filter
� OI:  A minimum variance estimate using a constant prior 

covariance matrix (unchanged in time).
– Gandin (1963): minimizing analysis err variance of a 

linear combination of obs increments (least square).
– Lorenc (1986): minimizing a costfunction 

(variational).
� 4DVAR (LeDimet & Talagrand 1986): A minimum 

variance estimate by minimizing a distance between 
model trajectory and obs using adjoint to derive the 
gradient under model’s constraint.

� Kalman filter (Kalman and Bucy 1961): linear error 
dynamics + linear observations:
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– Jazwinski (1970): a maximum likelihood estimate (Kolmogorov’s PDF eq.)
– Miller (1991): a minimum variance estimate (solve a weak constraint   

variational problem)

� Kalman filter and 4DVAR: Linear filter. OI: stationary filter.



Review of DA algorithms: 
Ensemble Kalman filter (ENKF, Evensen 1994)
� Use a set of ensemble members to discretely represent the state’s PDF 

to compute the sample statistics such as covariance and mean.
� Use the Kalman filter’s analysis formulation to update each ensemble  

member.
� Perturbing observations using obs value and error variance 

(Houtekamer 1998) to form an obs distribution in order to carry out 
“approximating random samples of the product using the product of 
random samples” (Burgers et al. 1998).

� Advantage: Consider the nonlinear time-evolution of error (prior) 
covariance matrix using ensemble.

� Disadvantage:
� Perturbing observations introduce noise for analyses.
� Sampling problems.

xa
i=xf

i+PHT(HPHT+R)-1(yi - Hxf
i) for the i-th ens member



An ensemble adjustment Kalman filter (EAKF) 
(Anderson 2001): Algorithm

� Define a joint state/obs vector z={xt,h(x,t)}, h gives the 
expected value of obs from model state.

� Use a set of prior ensemble members (advancing the model 
from the previous analysis) to compute prior cov matrix.

� Compute the product of two Gaussians (Gaussian convolution)

� Update the ensemble members using a linear operator A:
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g: model gridpoint
o: obs location
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An ensemble adjustment Kalman filter (EAKF)
(Anderson 2001): Advantages

� The generated new ensemble
maintains the non-Gaussian
information of prior 
distribution.

� The algorithm does not require 
perturbed observations.

� The algorithm only processes 
2x2 matrix, which just requires 
small storage and cheap 
computational cost.

� So, the algorithm 
allows the ensemble 
filter to be applied to 
a realistic NWP 
model.



Model: A fully-parameterized B-grid
version of FMS at GFDL

� Dynamical core: (Wyman 1996 from an early E-grid version)
– A global B-grid configuration (Arakawa and Lamb 1977).
– σ/p hybrid vertical coordinate.
– Prognostic equations: Momentum (u & v), temperature (T), specific 

humidity (q) and surface pressure (ps).
– Resolution: 90 x 60 (4o x 3o) x 18 (N30L18).

� Parameterizations:
– Long- and short-wave radiation (Fels and Schwarzkopf 1975; 1991).
– Moist-convection adjustment (Manabe et al. 1965) and large-scale 

condensation.
– Vertical turbulence (Mellor and Yamada 1982).
– Gravity-wave drag (Pierrehumbert 1987).
– Land processes (a simple ‘bucket’ hydrology).



Observing/assimilation simulation 
experiment: Perfect model study
� Observational network: 600 randomly distributed locations (vertical columns) 

over a global domain, available every 12 hours.

� Observations: a control run + white noise error, N(0, �).

Observational error standard deviation (�): 1 m/s (u & v), 1 k (T), 1 mb (Ps), 

10-4 kg kg-1 (q) .

� Initial conditions: ECMWF re-analysis at 00UTC on 01/01/79.

� Ensemble ICs: re-analysis data set + Gaussian errors.

� A 10o/cos(lat) x 10o impact window and only obs of the same physical variable 
at the same level: each model gridpoint at mid latitude is impacted by about 40 
obs. 

� System is spun up for 72 days using 20 ensemble members.

� Another 365-day assim (day 73 to day 437) was conducted.

� The period of day 112 to day 160 is examined in detail.



Assimilation results: q time series at (176E, 0) at 
model level 3 (sigma=0.946)

0 error

0 error



Assimilation results: precipitation rate time 
series at (176E, 0)

0 error

0 error



An ensemble OI assimilation experiment

� Same observational network as used by EAKF experiment before.

� Ensemble initial conditions: the assimilation results of EAKF at day 72.

� EAKF's update formulation:

� A time-averaged (stationary) error covariance matrix

� Picking the period of day 112 to day 160 for exam and comparisons.

� = � +− − −u p T[( ) ]1 1 1H R H

z z H R yu u p p T o= � � +− −[( ) ]1 1

z z z zi
u T

i
p p u= − +A ( )

� = �
u p TA A{



Estimate of stationary auto-covariance matrix:
u, v, T and q at model level 3 (sigma=0.946)
�Time-averaged over day 112 to day 160.
�Zonally-averaged over all key points at the same latitude.



Estimate of stationary cross-covariance matrix
v at model level 3 and ps, u, t and q
� Time-averaged over day 112 to day 160.
� Zonally-averaged over all key points at the same latitude.



Ensemble OI assim results: time series of T 
(176E, 45N) at model level 3 (sigma=0.946)



Ensemble OI Assim results: time series of q 
(176E, 45N) at model level 3 (sigma=0.946)



Ensemble OI assim results: time series of
precip rate (176E, 0)



Summary

� Filtering unifies the modern assimilation algorithms:
– OI (3DVAR) is a stationary filter.

– 4DVAR/Kalman filter is a linear filter.

– Ensemble filter accounts the nonlinear time evolution of covariance matrix 
and therefore may produce the best assimilation results.

� With many advantages (maintaining the non-Gaussian characteristics of 
prior distribution, not perturbing obs and only processing 2x2 matrix),
the ensemble adjustment Kalman filter (EAKF) is able to
– Conveniently estimate a flow-dependent error covariance in a multi-variate

system.

– Efficiently assimilate observational data.

� Ensemble OI induced by EAKF using a stationary (flow-independent) 
error covariance has a certain capability to assimilate observational data, 
but the assimilation error is around three times more than EAKF that 
uses flow-dependent error covariance.



Future work

� The model’s bias (imperfect model) and the quality control of 
observational data.

� Implement EAKF in ocean model (MOM4, for instance) and explore the 
new ocean data assimilation approach (first consider perfect model).

� Examine the characteristics of flow-independent/dependent error 
covariance using the ocean model to understand the model dynamics.

� Once the model’s adjoint is available, a direct comparison of the 
assimilation results using EAKF and 4DVAR provides more insight 
about data assimilation philosophies.

� Explore a feasible unification of EAKF and variational approach by 
introducing the flow-dependent error covariance in 4DVAR to improve 
data assimilation technologies.

� Study the possibilities to improve OI algorithm using the estimated 
stationary error covariance matrix from the realistic model.
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Question?


